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1. Introduction and Motivation

Self-balancing robots have sparked interest of many researchers, students and
hobbyist worldwide. From an engineer’s perspective, it is an inverted pendulum on
wheels. The inverted pendulum is a classical problem in control systems due its
unstable nature. To the average individual, one of the triggers for the curiosity
towards the self-balancing robots was the release of the Segway PT (Personal
Transporter). These robots became very popular because of their manoeuvrability, in
particular their short turning radius [1]. The Segway has been used in many
industries, from tourism in the park, police, and even ambulances. In recent times, a
derivative of the Segway, the hoverboard, has been in the headlines of social media,

once again directing the attention of many towards the engineering behind.

In any balancing robot knowing the tilt angle is critical, thus an inertial measurement
unit (IMU) is a necessity. The IMU is predominantly composed of a gyroscope and an
accelerometer. Both sensors have their advantages and disadvantages, therefore to
obtain a more accurate measurement the data has to be fused. As part of the project,
a technique known as Kalman filtering will be explored. If implemented and tuned
correctly, the Kalman Filter “is the best possible (optimal) estimator for a large class

of problems.” [2]

As a Mechatronics student, making a self-balancing robot is the ideal project. The
core of the project is control, thus it will allow the application what has been covered
to date and exploration of new material such as alternative controllers, data fusion or
odometry. In addition, the project is sufficiently broad to refine knowledge in the
areas of embedded systems, programming, PCB and mechanical design. The
material to be covered has a broad range of applications, developing many skills

transferrable to future projects.

The purpose of this report is to outline the plan of the project and to summarize the

progress achieved to date.
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2. Aims and Objectives

The aim of the project is to design, make and program a Self-Balancing Robot with a
self-developed Kalman Filter. In order to successfully complete the project, the

following objectives need to be met:

e Perform Literature review on Kalman Filters and implement in MATLAB
e Develop a Kalman Filter to fuse data from the gyroscope and accelerometer
e Design and assemble the chassis of the robot

e Develop a PID controller to enable the robot to stay upright
If time permits, the list below outlines the possible additional targets:

e Explore the use of a LQR or Fuzzy Logic controller

e Create a remote controller for the robot

e Improve the control algorithm to be able to support loads including
asymmetrical loads

e Create Autonomous Pre-programmed paths using odometry

3. Existing Work

Balancing Robots have existed for several years, thus many papers and theses have
been written about them. Some are purely for learning purposes, as is the case.
Others are to research the application of certain theory such as the LQH controller or
fuzzy logic. And certain theses, aim to develop a robot for a specific purpose, this
includes a butler robot or an interactive balancing robot to be used in exhibitions.

In most cases, students would focus on a certain aspect, such as data fusion,
analysis of dynamics or controller design, and the rest of the robot would be built
using simpler techniques. For example, they would focus on using a Kalman filter
and use a PID controller or focus on LQR controller and use a Complementary filter.

For sensor fusion, the complementary filter and the Kalman filter are the most

commonly employed techniques. The Kalman filter will be further explained in section
4. The complementary filter, simply consists of a low pass filter for the gyroscope and
high pass filter for the accelerometer. Whilst, the Kalman filter is accepted as the best

estimator, in a specific case the complementary filter appeared to perform better. [3]

To maintain the robot upright, the commonly mentioned controllers are Proportional-
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integral-derivative (PID) and the Linear Quadratic Regulator (LQR). A Linear
Quadratic-Gaussian controller has also been tested, however, due to a slow
microcontroller, it was not successful. [1] In a more complex situation, where the
robot also moves around, two controllers are used. For example an LQR controller to

balance the robot and a PID controller to control yaw. [4]

4. Kalman Filter

The Kalman Filter (KF) was first introduced in 1960 by Rudolf E. Kalman [5]. Since
then, due to its adaptability and usefulness, research and development has
continued creating variants such as the Extended Kalman Filter or the Unscented
Kalman Filter [2]. The KF was famously used in the Apollo program, ultimately taking
Neil Armstrong to the moon [6]. “The KF is over 50 years old but is still one of the
most important data fusion algorithms in use today [7].” Its use ranges from

navigation and object tracking to investment banking and economics.

Data fusion in essential in this case due to the nature of the gyroscope and
accelerometer. The accelerometer measurements are more susceptible to noise,
whilst the gyroscope drifts over time. This makes the accelerometer readings more
accurate in the long run, and the gyroscope more accurate over a short space of time

[8]. To resolve the dilemma the KF can be used.

In addition to the accuracy of estimation, the KF is appealing because it is a recursive
method. The current state is dependent on the previous state, which means that not
all the data is necessary, allowing it to be implemented in a simple microcontroller
without large storage [9]. One of the barriers for the use of the KF is difficulty in

understanding due to the lack of standard notation.

4.1. Creating a Model

To implement a KF, the system needs to be modelled in state-space form. The
difference equation (1) that can be used to represent the process state and equation

(2) models the measurements [2].

X = Axk_l + Buk + | T (1)
Zk = ka + I T T (2)
Where [6]:
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X IS the state vector, contains variables to be estimated i.e. angle or bias

uy is the vector containing control inputs i.e. angular acceleration

A is the transition matrix, which maps the state parameters at k-1 to k

B is the control input matrix, maps the controlled inputs u,, to the state vector
7, is the measurements matrix

H is matrix that transforms the state vector into measurements

wy and v, are the vectors containing the process noise and measurement noise
respectively. The noise is assumed to be zero mean Gaussian distributed with a

covariance Q and R, respectively i.e. w,~ (0, Q) and v~ (0, R).

4.2. The Kalman Filter Algorithm

The KF is composed of two sets of equations, time update and measurement update

equations.

4.2.1. Time Update

The following equations describe the time update stage, also known as the prediction

stage:

Ripk—1 = ARpqjk—1 T BUg oo (3)
Prjk—1 = A Prcajkm18k 4 Qleeeeeeeeeieiee e (4)
Where:

X Is the state estimate
P is the process covariance matrix

It is important to understand the subscript. a | b means a given b and all previous

states before b. For example Xy ,-1, is the estimate at k based on k-1 and on all the
states before k-1. Xy ;-4 is known as the priori state, x,_,x—1 is the previous state

and X, is the posteriori state.
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4.2.2. Measurement Update

The following equations are used in the measurement update:

Kk = Pk|k—1HI’€(HkPk|k—1HI’£ + Rk)_l ............................................

£k|k = £k|k—1 + Kk(zk - Hjc\k|k—1) ................................................................. (6)
Pk|k = Pk|k—1 - KkaPk|k—1 ........................................................................ (7)
Where: K is the Kalman Gain Matrix
4.3. Overall Diagram
The KF runs in a loop shown in the diagram below:
Initialisation: X1 Time Update
S U > Pe_y “Prediction”
Py
k=>k-1
T current becomes l
] previous
Output:
put Measurement
X P Measurement Update
k Input
Py

Figure 1 - Kalman Filter Loop (Diagram adapted from iLecture online [22])

4.4. Kalman Filter Practice in MATLAB

In order to better understand how KFs are implemented, examples were done in

MATLAB. The first example was following a tutorial, which the ‘real’ measurement

was a constant voltage [10]. In the tutorial the computation was shown, but no code

was given. Implementing it MATLAB helped visualize how the KF can be realised in

code. The MATLAB code can be found in Appendix 4. The figure in the following

page shows the output:
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— KF Output
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Figure 2 — Output of Kalman Filter implement in MATLAB for a constant voltage

To further aid understanding, a simple example was created and implemented. It

consists of measuring the displacement of an object travelling in 1-D at a constant

velocity of 1.5m/s. The MATLAB code can be found in Appendix 5. The figure below

shows the output:
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Figure 3 — Output of Kalman Filter for an object traveling away from origin at 1.5m/s
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5. Hardware

5.1. Microcontroller

The microcontroller chosen was the Arduino Uno. It has a relatively small footprint,
keeping the robot compact. The main advantage of the Arduino is large community
and extensive collection of libraries, if any problems are stumbled upon, there is a

higher chance that someone else has found a solution.

5.2. Motors

In order to establish the motors required, a calculation of
the required torque is necessary. The diagram to the right

shows a sketch of the balancing robot.

T= IPIIFISIG oo, (1) o

mg
Where: 7 is magnitude of the torque, F is the force vector,

r is the position vector and 6 is the angle between force

and position vectors. _ .
Figure 4 — Force due to gravity

Assuming the distance between the pivot point and the centre of mass (L) is 12cm,

the maximum tilt angle (Bmax) is 40° and the mass of the robot (m) is 0.7kg.
T= Lxmgx*sinf =0.12 % 0.7 * 9.81 *sin(40) = 0.530 N ....ceoviiiiiriiiniininanenn. (2)

Since there will be two motors, the minimum torque required is 0.265Nm. This
assumes the robot is going to start moving at the maximum tilt angle, in reality inertia

also has to be considered.

Looking at practical example, Gornicki used motors with a stall torque of 0.224Nm
and a gear with a 3:1 ratio [11]. Assuming 15% inefficiency [12], that equates to
0.5712Nm.

To fit the requirements, the chosen motor is the Pololu medium power 47:1 Metal
Gearmotor with 48 CPR Encoder. The stall torque of the motor is 0.611Nm and the
encoder outputs 2248.86 counts per revolution [13], corresponding to a resolution of
up to 0.16°. The encoders are necessary for odometry, without the encoders the

robot may balance but it will be moving around constantly.
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5.3. Power Source

The considered power sources were lithium polymer (Li-Po) batteries and AA
batteries. Li-Po batteries were found to be the most appropriate power source, as AA
batteries generally have a lower maximum discharge current [14]. Li-Po batteries
also have a relatively high specific energy and energy density [15]. There are some
dangers associated with them; these have been addressed in the Health and Safety
Risk Assessment (Appendix 2). The specific battery to be used is the Turnigy 3 cell
2200mAh 20C. The stall current for each motor is 2.1A at 12V [13] and power also
needs to be supplied to the other devices (Arduino, IMU and encoders). As a rough
estimate, the power source should be able to supply a minimum of 5A. The Li-Po

battery can supply up to 44A [16].

5.4. Motor Driver Board

The L298 dual full bridge driver was the initial choice due to its popularity. According
to the datasheet the motor driver has peak output current per channel of 2A in DC
operation and up to 3A non-repetitive [17]. In practice, the L298 would go into
thermal shut down at 0.8A [18], making it unsuitable for the robot. To avoid deceit
from manufacturers, the L6203 was chosen, theoretically it can supply 5A [19]. In

order not to damage the motors resettable fuses will be used.

5.5. IMU

The selected IMU is the MPU 9250 by InvenSense. It has 9 degrees of freedom,
consisting of 3-axis gyroscope, 3-axis accelerometer and 3-axis magnetometer. The
magnetometer is not necessary, but the IMU without the magnetometer costs twice
the price. By accessing the configuration register, the gyroscope full scale range can
adjusted from £250 to 1000 degrees per second. The accelerometer can also be
programmed from +2 to 6 g. The device has a built in Digital Motion Processor
(DMP), but for this project it will not be used. A great advantage of this IMU is that it

has been used with the Arduino and libraries are available for it. [20]

Communication between the Arduino and the IMU is through the Inter-Integrated
Circuit (12C) protocol. To read the values form the gyroscope and accelerometer,
specific memory addresses need to be accessed (the register map is in the Appendix
6). Following a tutorial for the MPUG6050, the raw data values were read. Surprisingly,
the register map for MPU9250 is identical to the MPU6050. The code to read the
values and the output window are in the Appendix 7 and 8, respectively.
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5.6. Overall Design

The overall planned format of the robot can be seen in the Solidworks render below:

Arduino and IMU

Li-Po Battery

Lateral Supports

RC Wheels

Box for additional

loads

Hole for cables

M3 Hex spacers

Motor driver board

Geared Motor with

encoders

Figure 5 — Solidworks render of Robot and Parts Diagram

The design is an adaptation of the SainSmart self-balancing robot [21]. The design is
entirely modular. The layer heights can be adjusted by choosing spacers of different
lengths and the box for loads can be removed. Having the layer format also protects
the components, specifically the Li-Po battery. The battery is shielded from heat
coming from the motor drivers and it is also protected from impacts.

The layers will be made of Medium Density Fibreboard (MDF). It is relatively light,
inexpensive, easy to manufacture and readily available in the university. In addition
MDF should be able to withstand the drops and hits that might happen when the

robot controller is being tuned.

The wheels will be from Remote Controlled (RC) cars. RC wheels are often wide
giving a larger surface area in contact with ground and the tyres are made of soft
rubber. They are designed this way to have good grip as often RC hobbyists
compete with each other. Having good traction is essential or the robot may skid and
fall.
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6. Conclusion

A basic understanding of Kalman filters has been achieved and the robot’s physical
design has been completed. The next step this semester is to implement the KF in C
code to fuse the data from the gyroscope and accelerometer. A comparison can then
be made between the data from the output of the KF and the built in DMP. Once the
Kalman filter is well tuned and a good estimate of the tilt angle is obtained, the PID

controller can then be developed to maintain the robot upright.

The progress achieved to date is as planned, this suggests that the aim of the project
is realistic. Based on the Project Plan in Appendix 3, the project should be completed
by the end of week 6 in the second semester. This allows some time to adjust for

unpredicted scenarios or to be dedicated in meeting the additional objectives.
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8. Appendices

8.1. Appendix 1 —Technical Risk Assessment

As mentioned previously, the Arduino makes it an easy platform to program in due to
large community and extensive collection of libraries. Furthermore, Kalman filters and
balancing robots have been realized using an Arduino, this suggests a lower
technical risk. However, due to low processing capability the Arduino itself may be a
liability. Christian Sundin mentions that the Arduino could not execute the algorithm
for an LQG controller fast enough [1]. If met with such scenario, a solution may be to
use two Arduinos in a master-slave configuration or use a faster microcontroller such
as the STM32 Nucleo.

Another risk for the project would be slow order processing time and delivery. If the
required components do not arrive within the expected time frame, the project will
have to be put on hold. To minimize this risk, component orders were placed early

this semester.
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Appendix 3—- Project Plan

8.3.
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8.4. Appendix 4 -Kalman Filter Code 1 — Constant
$Example from http://bilgin.esme.org/BitsAndBytes/KalmanFilterforDummies

zk = zeros (1,200);
y = 4 * ones (1,200);

for n=1:200

zk (n) = 4 + 0.5*randn;
end
x0=0;
PO=1;
R=0.25;
A=1;
Q=0;
X = zeros (1,200);

k = zeros (1,200);
p = zeros (1,200);

k(1)= PO/ (PO+R);
x(1)= %0 + k(1) *(zk(1)-x0);

p(l)= (1-k(1))*PO;

for t=2:200

k(t)= p(t-1)/(p(t-1)+R);
x(t)= x(t-1) + k(t)*(zk(t)-x(t-1));
p(t)=(1-k(t))*p(t-1);

end

subplot (121)

plot (x)

hold on

plot (y, 'Color',

lrl)

subplot (122)
plot (x-4)
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8.5. Appendix 5 - Kalman Filter Code 2 — Linear

$An object travelling in 1D at a constant velocity of 1.5m/s

vk = zeros (1,200);
for n=1:200yk
vk (n) = 1.5*n + 3*randn ;
end % creates 'measured' inputs with 'measurements' being independent
%0f each other i.e. erros don't propagate

R=1; %the function 'randn' ouputs normally distributed random numbers
%$this makes the standard deviation=1l, therefore variance=1

X0=0; %starting at origin

PO=1; %any non-zero value otherwise K=0
A=1;

0=0;

U=1.5; Stravelling speed

W=0; $Assuming no white noise

H=1; %1 as Jjust numbers not matrices

B = zeros (1,200);
for n=1:200
B(n)= n;
end $for elapsed time

xkp = zeros (1,200);
X = zeros (1,200);
k = zeros (1,200);
pkp = zeros (1,200);
pk = zeros (1,200);

%tl Predicted state
xkp (1)= A*X0 + B(1)*U + W;
pkp(l)= A*PO*A + Q;

$update w/ new measurements and kalman gain
k (1) =(pkp (1) *H) *inv (H*pkp (1) *H + R);

x(1)= xkp (1) + k(1)*(yk(1l)-H*xkp(1l));
pk(1)= (1-k(1)*H)*pkp(1);

for t=2:200
%t (n) Predicted state
xkp (t)= A*x(t-1) + 1*U + W;
pkp (t)= A*pk(t-1)*A + Q;
$update w/ new measurements and kalman gain
k(t)=(pkp(t) *H) *inv (H*pkp (t) *H + R);
x(t)= xkp(t) + k(t)* (yk(t)-H*xkp(t));

pk(t)= (1-k(t-1)*H) *pkp (t-1);
end

test = linspace(0,300,200);

subplot (121)

plot (x)

hold on

plot (yk, 'Color','zr")
subplot (122)

plot (x-test)

hold on

plot (yk-test, 'Color','r")
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8.6.

Appendix 6 - MPU 9250 Register Map

InvenSense

MPU-3250 Register Map and Descriptions

Documant Number: RM-MPU-02504-00
Rewigion: 1.4
Release Date: BWB2013

3 Register Map for Gyroscope and Accelerometer
The following table lists the register map for the gyroscope and accelerometer in the MPL-9250

MotionTracking device.

School of Electrical and Electronic Engineering

poan | | megistos wams L= Bt | Birs | Birs | B | Bt | B | By | Bt
[ 0 | eELF_TEST 5 _GvAD R vg_sl_dala [70]
01 i BELF_TEST_Y_GYRD R Vs, dala 7]
[ 1 | emF_rEsT_z_gveo Rel __daia 7]
oo i3 | BELF_TEST_s_ACCEL v A ET_DATA L]
[ 1 | SELF_TEST_v_ACCEL R A BT _DATA ]
3 15 | SELF_TEST_Z_aCcEL Rl T4 _ST_DATA D]
13 W | %0_OFFSET_H R X_OFFS_USR [158]
N X | wo_oFFeET_L R %_OFFS_USR 10|
15 H | wo_oFFEET_H Rl ¥ OFFS_UER [15:4]
) = | vo_OFFEET_L v ¥_OFFS_UISR 73]
7 | 2o oFFsET_N R Z_OFFS_LISR [158]
18 | 2o_oFFeET_L Rael 2_OFFE_USR [T20]
) % | ewPLRT oW R SMPLAT_DOT70
i = | cosFin R o EXT_SVNC_SETj2y DLPF_CFopy
18 7 | oveo_conea I e el B @YRO_FE_SEL [1:0] . | FCHOICE_B{1:0]
ic -] ACCEL_CONFIG iy _sl_gin ay_BI_en &_sh_gn ACCEL_FE _SEL|1:0) -
i0 X | AGCEL CONFIGZ R B ACCEL_FCHOICEE | A_TLPF_CFG
1E M | LP_ACCEL_COR R - Lpcsc_clsd [x0]
F 1 | wou_na Rl WOM_Treuseid [70]
TEWF GYRO_AD | GYRO_YD | GYRO_ZO
2 x| FIFo_ew v | b s b o ACCEL BLvE BLw aLvn
wuLT VAT B3 12C_MET
N % | o MET_ETRL AW | ueTEn | roAEs | rdces | roen 12C,_MET_CLK]0]
25 7 | o amoR O e 1C_iD_0 0]
) ® | oS00 REG R 12C,_ BLVD_REG:0]
P | Ecsve_cTRL | PGSV ;f,.;;:‘ | _‘:CBE’:;'; e ae BC_ELVO_LENGE:D]
) o | o aroR O B 1C_io_1 0]
) 4| sl ks R 12C_BLV1_REG:0]
e 4 | s TR R | SRS .T-;;‘ | _‘ch-EBLE“‘E e | BC_ELVI_LENGE0)
e B
= & | Eosne amoR R o 1C_iD_2 0]
it # | Goslv_REG v 12C_BLVZ_REGT:0]
m 45 | BCANE_ETAL U s -l - oy 5 | oy | B | E2C_ELVZ_LENGE:0]
w3 % | tec_swva_smoR R mﬁ?-w“ 12C_Io_3 jEg)
3 7| eoala_REs v 12C_BLVE_REGT:0]
a & | ecave o R mc_.g‘.-s mgu.-‘l';ﬁ | _lgcdhim“ | “’E&ﬁ"s | BC_E1VI_| ENG [0
a1 48 | tec_suwe_smoR R W_ﬁ?ﬁt“ 12C_ID_4 jE0)
a2 o | Gos0w REG R 12C,_ BLVe_REGT:0]
) s | c_aLw Do R BC_5Lvea_DOFD]
3 s | ecaue cTAL R | SR | S | e | 12_MST_DLYR:]
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InvenSense

MPU-9250 Register Map and Descriptions

Document Number: RM-MPLU-B2504-00
Revigion: 1.4
Felease Dale: WB2013
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IAI::'I xl Raglstes Marme a.: B | Bis Bas Bt | B | Bt | Bag
35 FEETT R 122 S Do)

= s | 1mcuer_sTaTus & i s ﬂcﬁ%m lzlcm%r lzlcm%xz 12:’.'_1\'2 la-c_mn la-cmeél.xn

LTCH INT_ANTR | arm g FEYMG P
a = | wTmN_cFo R oPEN e _Qf:m nc'ﬂ Juér-_s:m o
£ = | INT_EMARLE R o_EN _ngﬂ' FEYNC_INT M'I‘EL:':”-
_EM
1Y =% INT_STATUS: R \O_INT _1:’;-F':|.g.'\.' FERIMC Rl
i T FOF T

= s | ACCEL_XOUTH R ACCEL_S0AIT_HI15:8]

ac B0 | ACCEL_XOUT_L R ACCEL_XOUT_L[T0)

) & ACCEL_YOUT_H R ACCEL_YOUIT_H]15:5]

= & | ACCEL_vOUTL R ACECEL_YOUT LT

¥ B | ACCEL_ZOUT_H R ACCEL_ZOUT_HI15:8]

0 & | ACCEL_ZOuT L R ADCEL_ZOUT LTS

P 8 | TEMP_OUT_H R TEMP_CUT_H[15:8]

a2 s | TEMR_OUTL R TEWP_OUT L7

) & | GYRO_NOUT_H R G RADI_AOUIT_H15:8]

s &R RN ) FIVRRN_ER T, [+

45 B | GYRO_YOUT_H R CYR_YOUIT_H15:8]

- W™ | ovRo_vouTL R GYRO_YOUT_L[7-

a7 B OYRO_Z0UT_H R TYRO_Z0UT_H{ 153

a8 7 | GYRO_ZOUTL R GYRO_Z0UT_L[71)

40 73 | EXT_SEMS_DATA_0O R EXT_EENE_DATA,_DO[T0)

48 7s | ExT_gsEwS_DATAD R ET_SENE_DATA B[]

4 75 | EXT_SEMS_DATA 2 R EXT_EEME_DATA (70

4c 78 | ExT_gEms_DaTA DS R EXT_SENE_DATA,_0a[70]

40 7| ExT_gEws_paTa e R EXT_SENE_DITA B[]

4E 78 | EXT_SEMS_DATA 08 R ENT_SENE_DATA 05[]

- 7 | ET_gEms_DaTA e R EXT_SENE_DIATA_DE[TE]

50 a0 | EXT_SEMS_DATA 07 R ENT_SENE_DATA,_ 0T[40

51 # EAT_GENS_DATA 06 R EXT_SENE_DIATA_DB[T]

52 42 | EXT_SEMS_DATA_ 0 R EXT_SENE_DATA,_0O[T0]

53 85 | EXT_SENS_DATAI0 R EXT_SENE_DIATA_10[70]

54 4 | EXT_SEMS_DATA i1 R EXT_EEME_DATA_11[7:0]

55 a5 | ExT_sEws_DATA_i2 R EXT_SENE_DATA_1Z[74]

5 8 | EXT_gENS_DATA13 R EXT_GENE_DATA_13[74]

7 & | ET_gEms_DATA_1e R EXT_SEME_DATA_14[7:0]

s& 85 | EXT_SEMS_DATAIS R ENT_SENE_DITA_IS[7A]

50 a0 | EXT_SEMS_DATA_18 R ENT_SENE_DATA_18[7:0]

5a 90 | EXT_SENS_DATAIT R EXT_GENE_DATA_IT[A]

=) 0 EAT_SENE_DATA,_18 R ENT_SENE_DATA_1B[7:0]

5o 92 | EXT_SENS_DATA10 R ENT_SENE_DIATA_10[740]

0 93 | EXT_SEMS_DATA_20 R ENT_SENE_DATA_20[7:0]

5= 9 | EXT_SEWS_DATAZI R ET_SENE_DATA 21T

& 95 | EXT_SEMS_DATA22 R ENT_EEME_DATA 22720

80 9% | EXT_SEMS_DATAZ3 R EXT_SENE_DATA_Z3[70]

s w | ec_ane oo e ©r_SUVI_DOp]

4 00 | B 8L Do R 2C_SUv1_DOf]

™ 1| sl o e ©2C_8UvI_DOp]
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InvenSense

MPU-3250 Register Map and Descriptions

Docurment Number: RM-MPLU-8250A-00
Rewision: 1.4
Release Dale: WB2013

Addr | Addr Sarkal
Ny | ey | Pawister ams s it | Bi | Bits | Bas | By | ] | B | B
85 | e | o ALna Do A ©C_5Lva_DOfTD)
DEL&Y_ES BC_BLVe | BCBLVE | BCSvE | BCSLA | SLeD
a7 | ez | e et peav e | R v Do | Do | Deres | Tores | SPoeew
) ACCE TEWE
88 | i0e | mone PaTHRESET | RAW - R = TReT
ACCEL INT | ACCEL NT
a0 | s | woT_pemecT oAl R | e
& 6 | LSER_OTRL R - FIFgEN | 120 MET “’j{ _ﬁfg 'i‘fﬁ:f_“ | m_'h{;?ﬂ
@ | wr | Pee_eouT i aw | HRESET | sLEsR cvoe | SO eoprar CLKEELED
BC | B | PwR_MGMT_2 R DIS X DIg_YA DIE 78 oge | oEve | oisge
72 | 1 | FIFD_COUNTH R FIFD_CHT]1 28]
T | ms | FFO_coumTL R FIFCI_CAT]T|
7 | ne | AroAw R o)
7| nT | weo_sdl " WHOAM[T]
7 | 18 | xa_ofFseT_H R A _OFFE[147]
TE | 120 | wA_DFFEETL Rl b _OFFS o] |
A | 122 | va_ofFEET_H R YA _OFFE[147]
T8 | 123 | vA_DFFEETL Rl i_DFFE 0] |
| 125 | za_oFFseT_m R Z4_OFFE[147]
e 128 | ZA_OFFSET_L AN 24_0FFS A |

Table 1 MPU-9250 mode register map for Gyroscope and Acceleromater

Mote: Register Mames ending in _H and _L contain the high and low byles, respectively, of an internal
register value.

In the detailed register tables that follow, register names are in capital letters, while register values are in
capital letters and italicized. For example, the ACCEL _XOUT_H register (Register 59) coniains the 8 most
significant bits, ACCEL_XOUTT15:8], of the 16-bit X-Axis accelerometer measurement, ACCEL _XOUT.

The reset value is 0x00 for all registers other than the registers below.

Register 107 (0x01) Power Management 1
Register 117 (0x71) WHO_AM_|

9 of 55
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8.7. Appendix 7 - IMU Code to obtain raw values

/I code modified from https://www.youtube.com/watch?v=M9IZ5Qy5S2s
#include <Wire.h>
long accelX, accelY, accelZ; //accelerometer

long gyroX, gyroY, gyroZ;//gyro

void setup() {
Serial.begin(9600);
Wire.begin(); // starting 12C communication

// initialising the sensor //[SETTING UP POWER
Wire.beginTransmission(0x68); //12C address of the MPU (as SJ2 is in place)
Wire.write(Ox6B); // Power Management 1

Wire.write(0x00); // pg 40

Wire.endTransmission();

Wire.beginTransmission(0x68); //12C address of the MPU (as SJ2 is in place)
Wire.write(0x6C); // Power Management 2

Wire.write(0x00); // pg 41 - enables gyro and acc X,y,z
Wire.endTransmission();

IIGYRO CONFIGURATION

Wire.beginTransmission(0x68); //12C address of the MPU (as SJ2 is in place)
Wire.write(Ox1B); // gyro configuration

Wire.write(0x00); // pg 14 - sets the full scale to +/- 250 degress/second

Wire.endTransmission();

//ACC CONFIGURATION

Wire.beginTransmission(0x68); //12C address of the MPU (as SJ2 is in place)
Wire.write(0x1C); // acc configuration

Wire.write(0x00); // pg 14 - sets the full scale to +/- 2gs

Wire.endTransmission();

void loop() {
//get raw data (does not represent gs or dps, needs to be scaled depending on setup)
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/laccelerometer readings
Wire.beginTransmission(0x68); //12C address of the MPU
Wire.write(0x3B); //Starting register for Accel Readings
Wire.endTransmission();
Wire.requestFrom(0b1101000,6); //Request Accel Registers (3B - 40)
while(Wire.available() < 6);
accelX = Wire.read()<<8|Wire.read(); //Store first two bytes into accelX
accelY = Wire.read()<<8|Wire.read(); //Store middle two bytes into accelY

accelZ = Wire.read()<<8|Wire.read(); //Store last two bytes into accelZ

/lgyro data
Wire.beginTransmission(0x68); //12C address of the MPU
Wire.write(0x43); //Starting register for Gyro Readings
Wire.endTransmission();
Wire.requestFrom(0b1101000,6); //Request Gyro Registers (43 - 48)
while(Wire.available() < 6);
gyroX = Wire.read()<<8|Wire.read(); //Store first two bytes into accelX
gyroY = Wire.read()<<8|Wire.read(); //Store middle two bytes into accelY
gyroZ = Wire.read()<<8|Wire.read(); //Store last two bytes into accelZ

Serial.print("Gyro");
Serial.print(" X=");
Serial.print(gyroX);
Serial.print(" Y=");
Serial.print(gyroY);
Serial.print(" Z=");
Serial.print(gyroZ2);
Serial.print(" Accel");
Serial.print(" X=");
Serial.print(accelX);
Serial.print(" Y=");
Serial.print(accelY);
Serial.print(" Z=");
Serial.printin(accelZ);

}
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8.8.

Appendix 8 — IMU Output

nnne == L LT 0 MR MR DT

Lot el asi

Bloara macta

9 COM3 (Arduino/Genuina Una)

[m] hed

Send

Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro

E=-227
X=-193
X=-204
E=-238
X=-220
X=-217
E=-228
X=-208
X=-247
E=-21%
E=-222
X=-223
E=-207
X=-259
X=-225
E=-244
X=-227
E=-217
E=-203
X=-189
E=-232
E=-213
X=-202
E=-228
H=-208
X=-218
E=-228
¥=-189
X=-241
E=-212
H=-242
X=-196

¥=133 Z=-81 Rhccel =792 Y=128 ZI=16E1&
¥=111 2=-85 RAccel X=T760 Y=128 Z=16804
¥=108 Z=-102 Rccel X=T80 ¥=72 Z=16840
¥=100 Z=-107 Rccel X=T12 ¥=120 Z=16836
¥=130 2=-111 Rccel X=724 ¥=172 Z=1&856
¥=114 Z=-109 Rccel X=688 ¥=128 Z=16776
Y=88 Z=-93 RAccel X=T720 Y=200 Z=1&736

¥=130 2=-105 Rccel X=75& ¥=108 Z=1&808
¥=134 Z=-80 Accel X=752 Y=116 Z=16836
¥=82 Z=-100 RAccel X=69& Y=196 Z=16T&E&
¥=101 Z=-65 RAccel X=T760 Y=104 Z=16924
¥=123 Z=-115 Accel X=T724 ¥=152 i=16964
¥=133 Z=-94 Rccel E=T72 Y=148 Z=16940
¥=115 2=-90 RAccel X=772 ¥Y=112 Z=16888
¥=147 Z=-133 Accel X=T736 ¥=128 Z=16820
¥=123 Z=-99 Rccel X=T48 Y=178 Z=16792
¥=93 Z=-T73 Rccel X=816 ¥=140 Z=16820

¥=128 Z=-87 Rccel E=T20 Y=156 Z=16E87&
¥=135 Z=-87 Rccel XE=T&0 Y=112 Z=1&T08
¥=87 Z=-56 Rccel X=T732 ¥Y=68 Z=16840

¥=93 Z=-64 RAccel X=752 Y=132 I=1&840

¥=95 Z=-100 RAccel X=T6&0 Y=120 Z=1&77&
¥=113 Z=-67 Rccel X=T728 Y=148 Z=16836
¥=109 Z=-63 hccel X=T24 Y=220 Z=16TZ28
¥=95 Z=-81 Lccel HE=T88 Y=172 Z=1&784

¥=118 Z=-118 RAccel X=T740 ¥=148 Z=16884
¥=117 Z=-85 RAccel X=TE0 Y=108 Z=16908
¥=107 Z=-90 Rccel X=T756 Y=144 Z=16788
¥=128 Z=-82 Rccel X=724 Y=116 Z=16784
¥=120 Z=-87 Rccel XE=T12 Y=124 Z=18840
¥=155 Z=-121 Rccel ¥=672 ¥=136 Z=16856
¥=92 Z=-108 RAccel X=800 Y=100 Z=16820

Mo line ending

£

9600 baud  ~
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