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 Introduction and Motivation 1.

Self-balancing robots have sparked interest of many researchers, students and 

hobbyist worldwide. From an engineer’s perspective, it is an inverted pendulum on 

wheels. The inverted pendulum is a classical problem in control systems due its 

unstable nature. To the average individual, one of the triggers for the curiosity 

towards the self-balancing robots was the release of the Segway PT (Personal 

Transporter). These robots became very popular because of their manoeuvrability, in 

particular their short turning radius [1]. The Segway has been used in many 

industries, from tourism in the park, police, and even ambulances. In recent times, a 

derivative of the Segway, the hoverboard, has been in the headlines of social media, 

once again directing the attention of many towards the engineering behind. 

In any balancing robot knowing the tilt angle is critical, thus an inertial measurement 

unit (IMU) is a necessity. The IMU is predominantly composed of a gyroscope and an 

accelerometer. Both sensors have their advantages and disadvantages, therefore to 

obtain a more accurate measurement the data has to be fused. As part of the project, 

a technique known as Kalman filtering will be explored. If implemented and tuned 

correctly, the Kalman Filter “is the best possible (optimal) estimator for a large class 

of problems.” [2] 

As a Mechatronics student, making a self-balancing robot is the ideal project. The 

core of the project is control, thus it will allow the application what has been covered 

to date and exploration of new material such as alternative controllers, data fusion or 

odometry. In addition, the project is sufficiently broad to refine knowledge in the 

areas of embedded systems, programming, PCB and mechanical design. The 

material to be covered has a broad range of applications, developing many skills 

transferrable to future projects. 

The purpose of this report is to outline the plan of the project and to summarize the 

progress achieved to date. 
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 Aims and Objectives 2.

The aim of the project is to design, make and program a Self-Balancing Robot with a 

self-developed Kalman Filter. In order to successfully complete the project, the 

following objectives need to be met: 

 Perform Literature review on Kalman Filters and implement in MATLAB 

 Develop a Kalman Filter to fuse data from the gyroscope and accelerometer 

 Design and assemble the chassis of the robot 

 Develop a PID controller to enable the robot to stay upright 

If time permits, the list below outlines the possible additional targets: 

 Explore the use of a LQR or Fuzzy Logic controller 

 Create a remote controller for the robot 

 Improve the control algorithm to be able to support loads including 

asymmetrical loads 

 Create Autonomous Pre-programmed paths using odometry 

 Existing Work 3.

Balancing Robots have existed for several years, thus many papers and theses have 

been written about them. Some are purely for learning purposes, as is the case. 

Others are to research the application of certain theory such as the LQH controller or 

fuzzy logic. And certain theses, aim to develop a robot for a specific purpose, this 

includes a butler robot or an interactive balancing robot to be used in exhibitions. 

In most cases, students would focus on a certain aspect, such as data fusion, 

analysis of dynamics or controller design, and the rest of the robot would be built 

using simpler techniques. For example, they would focus on using a Kalman filter 

and use a PID controller or focus on LQR controller and use a Complementary filter. 

For sensor fusion, the complementary filter and the Kalman filter are the most 

commonly employed techniques. The Kalman filter will be further explained in section 

4. The complementary filter, simply consists of a low pass filter for the gyroscope and 

high pass filter for the accelerometer. Whilst, the Kalman filter is accepted as the best 

estimator, in a specific case the complementary filter appeared to perform better. [3] 

To maintain the robot upright, the commonly mentioned controllers are Proportional-
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integral-derivative (PID) and the Linear Quadratic Regulator (LQR). A Linear 

Quadratic-Gaussian controller has also been tested, however, due to a slow 

microcontroller, it was not successful. [1] In a more complex situation, where the 

robot also moves around, two controllers are used. For example an LQR controller to 

balance the robot and a PID controller to control yaw. [4] 

 Kalman Filter 4.

The Kalman Filter (KF) was first introduced in 1960 by Rudolf E. Kalman [5].  Since 

then, due to its adaptability and usefulness, research and development has 

continued creating variants such as the Extended Kalman Filter or the Unscented 

Kalman Filter [2]. The KF was famously used in the Apollo program, ultimately taking 

Neil Armstrong to the moon [6]. “The KF is over 50 years old but is still one of the 

most important data fusion algorithms in use today [7].”  Its use ranges from 

navigation and object tracking to investment banking and economics.  

Data fusion in essential in this case due to the nature of the gyroscope and 

accelerometer. The accelerometer measurements are more susceptible to noise, 

whilst the gyroscope drifts over time. This makes the accelerometer readings more 

accurate in the long run, and the gyroscope more accurate over a short space of time 

[8]. To resolve the dilemma the KF can be used.  

In addition to the accuracy of estimation, the KF is appealing because it is a recursive 

method. The current state is dependent on the previous state, which means that not 

all the data is necessary, allowing it to be implemented in a simple microcontroller 

without large storage [9]. One of the barriers for the use of the KF is difficulty in 

understanding due to the lack of standard notation.  

 Creating a Model 4.1.

To implement a KF, the system needs to be modelled in state-space form. The 

difference equation (1) that can be used to represent the process state and equation 

(2) models the measurements [2].  

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝑤𝑘−1……………………………………………………………… (1) 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘…………………………………………………………………………… (2) 

Where [6]:  
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𝑥𝑘 is the state vector, contains variables to be estimated i.e. angle or bias 

𝑢𝑘 is the vector containing control inputs i.e. angular acceleration 

A is the transition matrix, which maps the state parameters at k-1 to k 

B is the control input matrix, maps the controlled inputs 𝑢𝑘 to the state vector 

𝑧𝑘 is the measurements matrix 

H is matrix that transforms the state vector into measurements  

𝑤𝑘  and 𝑣𝑘 are the vectors containing the process noise and measurement noise 

respectively. The noise is assumed to be zero mean Gaussian distributed with a 

covariance Q and R, respectively i.e.  𝑤𝑘~ (0, Q) and 𝑣𝑘~ (0, R).   

 The Kalman Filter Algorithm 4.2.

The KF is composed of two sets of equations, time update and measurement update 

equations.  

4.2.1. Time Update 

The following equations describe the time update stage, also known as the prediction 

stage: 

�̂�𝑘|𝑘−1 = 𝐴�̂�𝑘−1|𝑘−1 + 𝐵𝑢𝑘…………………………………………..……………………. (3) 

𝑃𝑘|𝑘−1 = 𝐴𝑘 𝑃𝑘−1|𝑘−1𝐴𝑘
𝑇 + 𝑄𝑘………………………...…………...………………………. (4) 

Where: 

�̂� is the state estimate 

P is the process covariance matrix 

It is important to understand the subscript. a | b means a given b and all previous 

states before b. For example �̂�𝑘|𝑘−1, is the estimate at k based on k-1 and on all the 

states before k-1.  �̂�𝑘|𝑘−1 is known as the priori state,  �̂�𝑘−1|𝑘−1 is the previous state 

and  �̂�𝑘|𝑘 is the posteriori state. 
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4.2.2. Measurement Update 

The following equations are used in the measurement update: 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)−1…………………………………………………….. (5) 

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻�̂�𝑘|𝑘−1) ……………………………………………………….. (6) 

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘𝐻𝑘𝑃𝑘|𝑘−1 ……………………………………………………………… (7) 

Where: K is the Kalman Gain Matrix 

 Overall Diagram 4.3.

The KF runs in a loop shown in the diagram below: 

 

 

 

 

 

 

 Kalman Filter Practice in MATLAB  4.4.

In order to better understand how KFs are implemented, examples were done in 

MATLAB. The first example was following a tutorial, which the ‘real’ measurement 

was a constant voltage [10]. In the tutorial the computation was shown, but no code 

was given. Implementing it MATLAB helped visualize how the KF can be realised in 

code. The MATLAB code can be found in Appendix 4. The figure in the following 

page shows the output:  

𝑥0 

𝑃0 

Initialisation: 𝑥𝑘−1 

𝑃𝑘−1 

Time Update 

“Prediction” 

Measurement Update 
Measurement 

Input 
𝑥𝑘 

𝑃𝑘 

Output: 

k=>k-1 

current becomes 

previous 

Figure 1 - Kalman Filter Loop (Diagram adapted from iLecture online [22]) 
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To further aid understanding, a simple example was created and implemented. It 

consists of measuring the displacement of an object travelling in 1-D at a constant 

velocity of 1.5m/s. The MATLAB code can be found in Appendix 5. The figure below 

shows the output: 

 

 

Figure 2 – Output of Kalman Filter implement in MATLAB for a constant voltage 

Figure 3 – Output of Kalman Filter for an object traveling away from origin at 1.5m/s 
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θmax 

mg 
L 

 Hardware 5.

 Microcontroller 5.1.

The microcontroller chosen was the Arduino Uno. It has a relatively small footprint, 

keeping the robot compact. The main advantage of the Arduino is large community 

and extensive collection of libraries, if any problems are stumbled upon, there is a 

higher chance that someone else has found a solution. 

 Motors 5.2.

In order to establish the motors required, a calculation of 

the required torque is necessary. The diagram to the right 

shows a sketch of the balancing robot. 

𝜏 =  ‖𝒓‖‖𝑭‖𝑠𝑖𝑛𝜃 ………..……………..……………….... (1) 

Where: 𝜏 is magnitude of the torque, F is the force vector, 

r is the position vector and 𝜃 is the angle between force 

and position vectors.  

Assuming the distance between the pivot point and the centre of mass (L) is 12cm, 

the maximum tilt angle (θmax) is 40° and the mass of the robot (m) is 0.7kg. 

𝜏 =  𝐿 ∗ 𝑚𝑔 ∗ 𝑠𝑖𝑛𝜃 = 0.12 ∗ 0.7 ∗ 9.81 ∗ sin(40) = 0.530 𝑁𝑚 …………………………. (2) 

Since there will be two motors, the minimum torque required is 0.265Nm. This 

assumes the robot is going to start moving at the maximum tilt angle, in reality inertia 

also has to be considered.  

Looking at practical example, Gornicki used motors with a stall torque of 0.224Nm 

and a gear with a 3:1 ratio [11]. Assuming 15% inefficiency [12], that equates to 

0.5712Nm.  

To fit the requirements, the chosen motor is the Pololu medium power 47:1 Metal 

Gearmotor with 48 CPR Encoder. The stall torque of the motor is 0.611Nm and the 

encoder outputs 2248.86 counts per revolution [13], corresponding to a resolution of 

up to 0.16°. The encoders are necessary for odometry, without the encoders the 

robot may balance but it will be moving around constantly.  

Figure 4 – Force due to gravity 
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 Power Source 5.3.

The considered power sources were lithium polymer (Li-Po) batteries and AA 

batteries. Li-Po batteries were found to be the most appropriate power source, as AA 

batteries generally have a lower maximum discharge current [14]. Li-Po batteries 

also have a relatively high specific energy and energy density [15]. There are some 

dangers associated with them; these have been addressed in the Health and Safety 

Risk Assessment (Appendix 2). The specific battery to be used is the Turnigy 3 cell 

2200mAh 20C. The stall current for each motor is 2.1A at 12V [13] and power also 

needs to be supplied to the other devices (Arduino, IMU and encoders). As a rough 

estimate, the power source should be able to supply a minimum of 5A. The Li-Po 

battery can supply up to 44A [16].  

 Motor Driver Board 5.4.

The L298 dual full bridge driver was the initial choice due to its popularity. According 

to the datasheet the motor driver has peak output current per channel of 2A in DC 

operation and up to 3A non-repetitive [17]. In practice, the L298 would go into 

thermal shut down at 0.8A [18], making it unsuitable for the robot. To avoid deceit 

from manufacturers, the L6203 was chosen, theoretically it can supply 5A [19]. In 

order not to damage the motors resettable fuses will be used. 

 IMU  5.5.

The selected IMU is the MPU 9250 by InvenSense. It has 9 degrees of freedom, 

consisting of 3-axis gyroscope, 3-axis accelerometer and 3-axis magnetometer. The 

magnetometer is not necessary, but the IMU without the magnetometer costs twice 

the price. By accessing the configuration register, the gyroscope full scale range can 

adjusted from ±250 to 1000 degrees per second. The accelerometer can also be 

programmed from ±2 to 6 g. The device has a built in Digital Motion Processor 

(DMP), but for this project it will not be used. A great advantage of this IMU is that it 

has been used with the Arduino and libraries are available for it. [20] 

Communication between the Arduino and the IMU is through the Inter-Integrated 

Circuit (I2C) protocol. To read the values form the gyroscope and accelerometer, 

specific memory addresses need to be accessed (the register map is in the Appendix 

6). Following a tutorial for the MPU6050, the raw data values were read. Surprisingly, 

the register map for MPU9250 is identical to the MPU6050.  The code to read the 

values and the output window are in the Appendix 7 and 8, respectively. 
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 Overall Design 5.6.

The overall planned format of the robot can be seen in the Solidworks render below: 

 

 

The design is an adaptation of the SainSmart self-balancing robot [21].  The design is 

entirely modular. The layer heights can be adjusted by choosing spacers of different 

lengths and the box for loads can be removed. Having the layer format also protects 

the components, specifically the Li-Po battery. The battery is shielded from heat 

coming from the motor drivers and it is also protected from impacts.  

The layers will be made of Medium Density Fibreboard (MDF). It is relatively light, 

inexpensive, easy to manufacture and readily available in the university. In addition 

MDF should be able to withstand the drops and hits that might happen when the 

robot controller is being tuned. 

The wheels will be from Remote Controlled (RC) cars. RC wheels are often wide 

giving a larger surface area in contact with ground and the tyres are made of soft 

rubber. They are designed this way to have good grip as often RC hobbyists 

compete with each other. Having good traction is essential or the robot may skid and 

fall.  

 

Box for additional 

loads 

Hole for cables 

M3 Hex spacers 

Motor driver board 

Geared Motor with 

encoders 

Arduino and IMU 

Li-Po Battery 

Lateral Supports 

RC Wheels 

Figure 5 – Solidworks render of Robot and Parts Diagram 
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 Conclusion 6.

A basic understanding of Kalman filters has been achieved and the robot’s physical 

design has been completed. The next step this semester is to implement the KF in C 

code to fuse the data from the gyroscope and accelerometer. A comparison can then 

be made between the data from the output of the KF and the built in DMP. Once the 

Kalman filter is well tuned and a good estimate of the tilt angle is obtained, the PID 

controller can then be developed to maintain the robot upright. 

The progress achieved to date is as planned, this suggests that the aim of the project 

is realistic. Based on the Project Plan in Appendix 3, the project should be completed 

by the end of week 6 in the second semester. This allows some time to adjust for 

unpredicted scenarios or to be dedicated in meeting the additional objectives. 
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 Appendices 8.

 Appendix 1 –Technical Risk Assessment 8.1.

As mentioned previously, the Arduino makes it an easy platform to program in due to 

large community and extensive collection of libraries. Furthermore, Kalman filters and 

balancing robots have been realized using an Arduino, this suggests a lower 

technical risk. However, due to low processing capability the Arduino itself may be a 

liability. Christian Sundin mentions that the Arduino could not execute the algorithm 

for an LQG controller fast enough [1]. If met with such scenario, a solution may be to 

use two Arduinos in a master-slave configuration or use a faster microcontroller such 

as the STM32 Nucleo.  

Another risk for the project would be slow order processing time and delivery. If the 

required components do not arrive within the expected time frame, the project will 

have to be put on hold. To minimize this risk, component orders were placed early 

this semester.  
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 Appendix 2 – Health and Safety Risk Assessment 8.2.
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 Appendix 3– Project Plan 8.3.
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 Appendix 4 -Kalman Filter Code 1 – Constant 8.4.

%Example from http://bilgin.esme.org/BitsAndBytes/KalmanFilterforDummies 
zk = zeros (1,200); 
y = 4 * ones (1,200); 

  
for n=1:200 
    zk (n) = 4 + 0.5*randn; 
end 

  
x0=0; 
P0=1; 
R=0.25; 
A=1; 
Q=0; 

  
x = zeros (1,200); 
k = zeros (1,200); 
p = zeros (1,200); 

  
k(1)= P0/(P0+R); 

  
x(1)= x0 + k(1)*(zk(1)-x0); 
p(1)= (1-k(1))*P0; 

  

  
for t=2:200 

     
   k(t)= p(t-1)/(p(t-1)+R); 
   x(t)= x(t-1) + k(t)*(zk(t)-x(t-1)); 
   p(t)=(1-k(t))*p(t-1); 

   
end 
subplot(121) 
plot(x) 
hold on 
plot (y, 'Color','r') 

  
subplot(122) 
plot(x-4) 
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 Appendix 5 - Kalman Filter Code 2 – Linear  8.5.

%An object travelling in 1D at a constant velocity of 1.5m/s 

  
yk = zeros (1,200); 
for n=1:200yk 
    yk (n) = 1.5*n + 3*randn ; 
end  % creates 'measured' inputs with 'measurements' being independent  
       %of each other i.e. erros don't propagate 

  
R=1; %the function 'randn' ouputs normally distributed random numbers 
     %this makes the standard deviation=1, therefore variance=1 

      
X0=0; %starting at origin 
P0=1; %any non-zero value otherwise K=0 
A=1; 
Q=0;                                      
U=1.5; %travelling speed 
W=0;   %Assuming no white noise 
H=1; %1 as just numbers not matrices 

  
B = zeros (1,200); 
for n=1:200 
    B(n)= n; 
end    %for elapsed time 

  
xkp = zeros (1,200); 
x = zeros (1,200); 
k = zeros (1,200); 
pkp = zeros (1,200); 
pk = zeros (1,200); 

  
%t1 Predicted state 
xkp(1)= A*X0 +  B(1)*U + W; 
pkp(1)= A*P0*A + Q; 

  
%update w/ new measurements and kalman gain 
k(1)=(pkp(1)*H)*inv(H*pkp(1)*H + R); 
x(1)= xkp(1) + k(1)*(yk(1)-H*xkp(1)); 
pk(1)= (1-k(1)*H)*pkp(1); 

  
for t=2:200 
    %t(n) Predicted state 
    xkp(t)= A*x(t-1) +  1*U + W; 
    pkp(t)= A*pk(t-1)*A + Q; 
    %update w/ new measurements and kalman gain 
    k(t)=(pkp(t)*H)*inv(H*pkp(t)*H + R); 
    x(t)= xkp(t) + k(t)*(yk(t)-H*xkp(t)); 

  
    pk(t)= (1-k(t-1)*H)*pkp(t-1); 
end 

  
test = linspace(0,300,200); 

  
subplot(121) 
plot(x) 
hold on 
plot (yk, 'Color','r') 
subplot(122) 
plot(x-test) 
hold on 
plot(yk-test, 'Color','r') 
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 Appendix 6 - MPU 9250 Register Map 8.6.
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 Appendix 7 - IMU Code to obtain raw values 8.7.

// code modified from https://www.youtube.com/watch?v=M9lZ5Qy5S2s 

#include <Wire.h> 

long accelX, accelY, accelZ; //accelerometer 

long gyroX, gyroY, gyroZ;//gyro 

 

void setup() { 

  Serial.begin(9600); 

  Wire.begin(); // starting I2C communication 

 

  // initialising the sensor  //SETTING UP POWER 

  Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place) 

  Wire.write(0x6B); // Power Management 1  

  Wire.write(0x00); // pg 40 

  Wire.endTransmission();   

   

  Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place) 

  Wire.write(0x6C); // Power Management 2  

  Wire.write(0x00); // pg 41 - enables gyro and acc x,y,z 

  Wire.endTransmission();   

 

  //GYRO CONFIGURATION 

  Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place) 

  Wire.write(0x1B); // gyro configuration 

  Wire.write(0x00); // pg 14 - sets the full scale to +/- 250 degress/second 

  Wire.endTransmission();   

   

  //ACC CONFIGURATION 

  Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place) 

  Wire.write(0x1C); // acc configuration 

  Wire.write(0x00); // pg 14 - sets the full scale to +/- 2gs 

  Wire.endTransmission();   

} 

 

void loop() { 

//get raw data (does not represent gs or dps, needs to be scaled depending on setup) 
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//accelerometer readings 

  Wire.beginTransmission(0x68); //I2C address of the MPU 

  Wire.write(0x3B); //Starting register for Accel Readings 

  Wire.endTransmission(); 

  Wire.requestFrom(0b1101000,6); //Request Accel Registers (3B - 40) 

  while(Wire.available() < 6); 

  accelX = Wire.read()<<8|Wire.read(); //Store first two bytes into accelX 

  accelY = Wire.read()<<8|Wire.read(); //Store middle two bytes into accelY 

  accelZ = Wire.read()<<8|Wire.read(); //Store last two bytes into accelZ 

 

//gyro data 

  Wire.beginTransmission(0x68); //I2C address of the MPU 

  Wire.write(0x43); //Starting register for Gyro Readings 

  Wire.endTransmission(); 

  Wire.requestFrom(0b1101000,6); //Request Gyro Registers (43 - 48) 

  while(Wire.available() < 6); 

  gyroX = Wire.read()<<8|Wire.read(); //Store first two bytes into accelX 

  gyroY = Wire.read()<<8|Wire.read(); //Store middle two bytes into accelY 

  gyroZ = Wire.read()<<8|Wire.read(); //Store last two bytes into accelZ 

 

  Serial.print("Gyro"); 

  Serial.print(" X="); 

  Serial.print(gyroX); 

  Serial.print(" Y="); 

  Serial.print(gyroY); 

  Serial.print(" Z="); 

  Serial.print(gyroZ); 

  Serial.print(" Accel"); 

  Serial.print(" X="); 

  Serial.print(accelX); 

  Serial.print(" Y="); 

  Serial.print(accelY); 

  Serial.print(" Z="); 

  Serial.println(accelZ); 

} 
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 Appendix 8 – IMU Output 8.8.

 


