

School of Electrical and Electronic Engineering

Self-Balancing Robot

Third Year Individual Project – Progress Report

Nov 2016

Abdul Gafar

9097951

Supervisor:

Dr. Joaquin Carrasco Gomez

School of Electrical and Electronic Engineering

Contents
 Introduction and Motivation .. 1 1.

 Aims and Objectives .. 2 2.

 Existing Work ... 2 3.

 Kalman Filter .. 3 4.

 Creating a Model .. 3 4.1.

 The Kalman Filter Algorithm ... 4 4.2.

4.2.1. Time Update .. 4

4.2.2. Measurement Update .. 5

 Overall Diagram ... 5 4.3.

 Kalman Filter Practice in MATLAB ... 5 4.4.

 Hardware ... 7 5.

 Microcontroller ... 7 5.1.

 Motors .. 7 5.2.

 Power Source .. 8 5.3.

 Motor Driver Board ... 8 5.4.

 IMU .. 8 5.5.

 Overall Design ... 9 5.6.

 Conclusion ... 10 6.

 References ... 11 7.

 Appendices .. 13 8.

 Appendix 1 –Technical Risk Assessment .. 13 8.1.

 Appendix 2 – Health and Safety Risk Assessment 14 8.2.

 Appendix 3– Project Plan ... 16 8.3.

 Appendix 4 -Kalman Filter Code 1 – Constant ... 17 8.4.

 Appendix 5 - Kalman Filter Code 2 – Linear .. 18 8.5.

 Appendix 6 - MPU 9250 Register Map ... 19 8.6.

 Appendix 7 - IMU Code to obtain raw values ... 22 8.7.

 Appendix 8 – IMU Output ... 24 8.8.

School of Electrical and Electronic Engineering Page 1

 Introduction and Motivation 1.

Self-balancing robots have sparked interest of many researchers, students and

hobbyist worldwide. From an engineer’s perspective, it is an inverted pendulum on

wheels. The inverted pendulum is a classical problem in control systems due its

unstable nature. To the average individual, one of the triggers for the curiosity

towards the self-balancing robots was the release of the Segway PT (Personal

Transporter). These robots became very popular because of their manoeuvrability, in

particular their short turning radius [1]. The Segway has been used in many

industries, from tourism in the park, police, and even ambulances. In recent times, a

derivative of the Segway, the hoverboard, has been in the headlines of social media,

once again directing the attention of many towards the engineering behind.

In any balancing robot knowing the tilt angle is critical, thus an inertial measurement

unit (IMU) is a necessity. The IMU is predominantly composed of a gyroscope and an

accelerometer. Both sensors have their advantages and disadvantages, therefore to

obtain a more accurate measurement the data has to be fused. As part of the project,

a technique known as Kalman filtering will be explored. If implemented and tuned

correctly, the Kalman Filter “is the best possible (optimal) estimator for a large class

of problems.” [2]

As a Mechatronics student, making a self-balancing robot is the ideal project. The

core of the project is control, thus it will allow the application what has been covered

to date and exploration of new material such as alternative controllers, data fusion or

odometry. In addition, the project is sufficiently broad to refine knowledge in the

areas of embedded systems, programming, PCB and mechanical design. The

material to be covered has a broad range of applications, developing many skills

transferrable to future projects.

The purpose of this report is to outline the plan of the project and to summarize the

progress achieved to date.

School of Electrical and Electronic Engineering Page 2

 Aims and Objectives 2.

The aim of the project is to design, make and program a Self-Balancing Robot with a

self-developed Kalman Filter. In order to successfully complete the project, the

following objectives need to be met:

 Perform Literature review on Kalman Filters and implement in MATLAB

 Develop a Kalman Filter to fuse data from the gyroscope and accelerometer

 Design and assemble the chassis of the robot

 Develop a PID controller to enable the robot to stay upright

If time permits, the list below outlines the possible additional targets:

 Explore the use of a LQR or Fuzzy Logic controller

 Create a remote controller for the robot

 Improve the control algorithm to be able to support loads including

asymmetrical loads

 Create Autonomous Pre-programmed paths using odometry

 Existing Work 3.

Balancing Robots have existed for several years, thus many papers and theses have

been written about them. Some are purely for learning purposes, as is the case.

Others are to research the application of certain theory such as the LQH controller or

fuzzy logic. And certain theses, aim to develop a robot for a specific purpose, this

includes a butler robot or an interactive balancing robot to be used in exhibitions.

In most cases, students would focus on a certain aspect, such as data fusion,

analysis of dynamics or controller design, and the rest of the robot would be built

using simpler techniques. For example, they would focus on using a Kalman filter

and use a PID controller or focus on LQR controller and use a Complementary filter.

For sensor fusion, the complementary filter and the Kalman filter are the most

commonly employed techniques. The Kalman filter will be further explained in section

4. The complementary filter, simply consists of a low pass filter for the gyroscope and

high pass filter for the accelerometer. Whilst, the Kalman filter is accepted as the best

estimator, in a specific case the complementary filter appeared to perform better. [3]

To maintain the robot upright, the commonly mentioned controllers are Proportional-

School of Electrical and Electronic Engineering Page 3

integral-derivative (PID) and the Linear Quadratic Regulator (LQR). A Linear

Quadratic-Gaussian controller has also been tested, however, due to a slow

microcontroller, it was not successful. [1] In a more complex situation, where the

robot also moves around, two controllers are used. For example an LQR controller to

balance the robot and a PID controller to control yaw. [4]

 Kalman Filter 4.

The Kalman Filter (KF) was first introduced in 1960 by Rudolf E. Kalman [5]. Since

then, due to its adaptability and usefulness, research and development has

continued creating variants such as the Extended Kalman Filter or the Unscented

Kalman Filter [2]. The KF was famously used in the Apollo program, ultimately taking

Neil Armstrong to the moon [6]. “The KF is over 50 years old but is still one of the

most important data fusion algorithms in use today [7].” Its use ranges from

navigation and object tracking to investment banking and economics.

Data fusion in essential in this case due to the nature of the gyroscope and

accelerometer. The accelerometer measurements are more susceptible to noise,

whilst the gyroscope drifts over time. This makes the accelerometer readings more

accurate in the long run, and the gyroscope more accurate over a short space of time

[8]. To resolve the dilemma the KF can be used.

In addition to the accuracy of estimation, the KF is appealing because it is a recursive

method. The current state is dependent on the previous state, which means that not

all the data is necessary, allowing it to be implemented in a simple microcontroller

without large storage [9]. One of the barriers for the use of the KF is difficulty in

understanding due to the lack of standard notation.

 Creating a Model 4.1.

To implement a KF, the system needs to be modelled in state-space form. The

difference equation (1) that can be used to represent the process state and equation

(2) models the measurements [2].

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝑤𝑘−1……………………………………………………………… (1)

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘…………………………………………………………………………… (2)

Where [6]:

School of Electrical and Electronic Engineering Page 4

𝑥𝑘 is the state vector, contains variables to be estimated i.e. angle or bias

𝑢𝑘 is the vector containing control inputs i.e. angular acceleration

A is the transition matrix, which maps the state parameters at k-1 to k

B is the control input matrix, maps the controlled inputs 𝑢𝑘 to the state vector

𝑧𝑘 is the measurements matrix

H is matrix that transforms the state vector into measurements

𝑤𝑘 and 𝑣𝑘 are the vectors containing the process noise and measurement noise

respectively. The noise is assumed to be zero mean Gaussian distributed with a

covariance Q and R, respectively i.e. 𝑤𝑘~ (0, Q) and 𝑣𝑘~ (0, R).

 The Kalman Filter Algorithm 4.2.

The KF is composed of two sets of equations, time update and measurement update

equations.

4.2.1. Time Update

The following equations describe the time update stage, also known as the prediction

stage:

�̂�𝑘|𝑘−1 = 𝐴�̂�𝑘−1|𝑘−1 + 𝐵𝑢𝑘…………………………………………..……………………. (3)

𝑃𝑘|𝑘−1 = 𝐴𝑘 𝑃𝑘−1|𝑘−1𝐴𝑘
𝑇 + 𝑄𝑘………………………...…………...………………………. (4)

Where:

�̂� is the state estimate

P is the process covariance matrix

It is important to understand the subscript. a | b means a given b and all previous

states before b. For example �̂�𝑘|𝑘−1, is the estimate at k based on k-1 and on all the

states before k-1. �̂�𝑘|𝑘−1 is known as the priori state, �̂�𝑘−1|𝑘−1 is the previous state

and �̂�𝑘|𝑘 is the posteriori state.

School of Electrical and Electronic Engineering Page 5

4.2.2. Measurement Update

The following equations are used in the measurement update:

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)−1…………………………………………………….. (5)

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻�̂�𝑘|𝑘−1) ……………………………………………………….. (6)

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘𝐻𝑘𝑃𝑘|𝑘−1 ……………………………………………………………… (7)

Where: K is the Kalman Gain Matrix

 Overall Diagram 4.3.

The KF runs in a loop shown in the diagram below:

 Kalman Filter Practice in MATLAB 4.4.

In order to better understand how KFs are implemented, examples were done in

MATLAB. The first example was following a tutorial, which the ‘real’ measurement

was a constant voltage [10]. In the tutorial the computation was shown, but no code

was given. Implementing it MATLAB helped visualize how the KF can be realised in

code. The MATLAB code can be found in Appendix 4. The figure in the following

page shows the output:

𝑥0

𝑃0

Initialisation: 𝑥𝑘−1

𝑃𝑘−1

Time Update

“Prediction”

Measurement Update
Measurement

Input
𝑥𝑘

𝑃𝑘

Output:

k=>k-1

current becomes

previous

Figure 1 - Kalman Filter Loop (Diagram adapted from iLecture online [22])

School of Electrical and Electronic Engineering Page 6

To further aid understanding, a simple example was created and implemented. It

consists of measuring the displacement of an object travelling in 1-D at a constant

velocity of 1.5m/s. The MATLAB code can be found in Appendix 5. The figure below

shows the output:

Figure 2 – Output of Kalman Filter implement in MATLAB for a constant voltage

Figure 3 – Output of Kalman Filter for an object traveling away from origin at 1.5m/s

School of Electrical and Electronic Engineering Page 7

θmax

mg
L

 Hardware 5.

 Microcontroller 5.1.

The microcontroller chosen was the Arduino Uno. It has a relatively small footprint,

keeping the robot compact. The main advantage of the Arduino is large community

and extensive collection of libraries, if any problems are stumbled upon, there is a

higher chance that someone else has found a solution.

 Motors 5.2.

In order to establish the motors required, a calculation of

the required torque is necessary. The diagram to the right

shows a sketch of the balancing robot.

𝜏 = ‖𝒓‖‖𝑭‖𝑠𝑖𝑛𝜃 ………..……………..……………….... (1)

Where: 𝜏 is magnitude of the torque, F is the force vector,

r is the position vector and 𝜃 is the angle between force

and position vectors.

Assuming the distance between the pivot point and the centre of mass (L) is 12cm,

the maximum tilt angle (θmax) is 40° and the mass of the robot (m) is 0.7kg.

𝜏 = 𝐿 ∗ 𝑚𝑔 ∗ 𝑠𝑖𝑛𝜃 = 0.12 ∗ 0.7 ∗ 9.81 ∗ sin(40) = 0.530 𝑁𝑚 …………………………. (2)

Since there will be two motors, the minimum torque required is 0.265Nm. This

assumes the robot is going to start moving at the maximum tilt angle, in reality inertia

also has to be considered.

Looking at practical example, Gornicki used motors with a stall torque of 0.224Nm

and a gear with a 3:1 ratio [11]. Assuming 15% inefficiency [12], that equates to

0.5712Nm.

To fit the requirements, the chosen motor is the Pololu medium power 47:1 Metal

Gearmotor with 48 CPR Encoder. The stall torque of the motor is 0.611Nm and the

encoder outputs 2248.86 counts per revolution [13], corresponding to a resolution of

up to 0.16°. The encoders are necessary for odometry, without the encoders the

robot may balance but it will be moving around constantly.

Figure 4 – Force due to gravity

School of Electrical and Electronic Engineering Page 8

 Power Source 5.3.

The considered power sources were lithium polymer (Li-Po) batteries and AA

batteries. Li-Po batteries were found to be the most appropriate power source, as AA

batteries generally have a lower maximum discharge current [14]. Li-Po batteries

also have a relatively high specific energy and energy density [15]. There are some

dangers associated with them; these have been addressed in the Health and Safety

Risk Assessment (Appendix 2). The specific battery to be used is the Turnigy 3 cell

2200mAh 20C. The stall current for each motor is 2.1A at 12V [13] and power also

needs to be supplied to the other devices (Arduino, IMU and encoders). As a rough

estimate, the power source should be able to supply a minimum of 5A. The Li-Po

battery can supply up to 44A [16].

 Motor Driver Board 5.4.

The L298 dual full bridge driver was the initial choice due to its popularity. According

to the datasheet the motor driver has peak output current per channel of 2A in DC

operation and up to 3A non-repetitive [17]. In practice, the L298 would go into

thermal shut down at 0.8A [18], making it unsuitable for the robot. To avoid deceit

from manufacturers, the L6203 was chosen, theoretically it can supply 5A [19]. In

order not to damage the motors resettable fuses will be used.

 IMU 5.5.

The selected IMU is the MPU 9250 by InvenSense. It has 9 degrees of freedom,

consisting of 3-axis gyroscope, 3-axis accelerometer and 3-axis magnetometer. The

magnetometer is not necessary, but the IMU without the magnetometer costs twice

the price. By accessing the configuration register, the gyroscope full scale range can

adjusted from ±250 to 1000 degrees per second. The accelerometer can also be

programmed from ±2 to 6 g. The device has a built in Digital Motion Processor

(DMP), but for this project it will not be used. A great advantage of this IMU is that it

has been used with the Arduino and libraries are available for it. [20]

Communication between the Arduino and the IMU is through the Inter-Integrated

Circuit (I2C) protocol. To read the values form the gyroscope and accelerometer,

specific memory addresses need to be accessed (the register map is in the Appendix

6). Following a tutorial for the MPU6050, the raw data values were read. Surprisingly,

the register map for MPU9250 is identical to the MPU6050. The code to read the

values and the output window are in the Appendix 7 and 8, respectively.

School of Electrical and Electronic Engineering Page 9

 Overall Design 5.6.

The overall planned format of the robot can be seen in the Solidworks render below:

The design is an adaptation of the SainSmart self-balancing robot [21]. The design is

entirely modular. The layer heights can be adjusted by choosing spacers of different

lengths and the box for loads can be removed. Having the layer format also protects

the components, specifically the Li-Po battery. The battery is shielded from heat

coming from the motor drivers and it is also protected from impacts.

The layers will be made of Medium Density Fibreboard (MDF). It is relatively light,

inexpensive, easy to manufacture and readily available in the university. In addition

MDF should be able to withstand the drops and hits that might happen when the

robot controller is being tuned.

The wheels will be from Remote Controlled (RC) cars. RC wheels are often wide

giving a larger surface area in contact with ground and the tyres are made of soft

rubber. They are designed this way to have good grip as often RC hobbyists

compete with each other. Having good traction is essential or the robot may skid and

fall.

Box for additional

loads

Hole for cables

M3 Hex spacers

Motor driver board

Geared Motor with

encoders

Arduino and IMU

Li-Po Battery

Lateral Supports

RC Wheels

Figure 5 – Solidworks render of Robot and Parts Diagram

School of Electrical and Electronic Engineering Page 10

 Conclusion 6.

A basic understanding of Kalman filters has been achieved and the robot’s physical

design has been completed. The next step this semester is to implement the KF in C

code to fuse the data from the gyroscope and accelerometer. A comparison can then

be made between the data from the output of the KF and the built in DMP. Once the

Kalman filter is well tuned and a good estimate of the tilt angle is obtained, the PID

controller can then be developed to maintain the robot upright.

The progress achieved to date is as planned, this suggests that the aim of the project

is realistic. Based on the Project Plan in Appendix 3, the project should be completed

by the end of week 6 in the second semester. This allows some time to adjust for

unpredicted scenarios or to be dedicated in meeting the additional objectives.

School of Electrical and Electronic Engineering Page 11

 References 7.

[1] Sundin, C. and Thorstensson, F. (2013). Autonomous balancing robot. Masters

of Science. Chalmers University of Technolgy.

[2] Welch, G. and Bishop, G. (2001). An Introduction to the Kalman Filter. [online]

Available at:

http://www.cs.unc.edu/~tracker/media/pdf/SIGGRAPH2001_CoursePack_08.pd

f [Accessed 4 Nov. 2016].

[3] Bonafilia, B., Gustafsson, N., Nyman, P. and Nilsson, S. (n.d.). Self-balancing

two-wheeled robot. Chalmers University of Technology.

[4] Ding, Y., Gafford, J. and Kunio, M. (2012). Modeling, Simulation and Fabrication

of a Balancing Robot. Harvard University, Massachusetts Institute of

Technology.

[5] Welch, G. and Bishop, G. (2006). An Introduction to the Kalman Filter. [online]

Available at: http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf

[Accessed 4 Nov. 2016].

[6] Carrasco, J. (2016). 5 Lines of Code to Land on the Moon.

[7] Faragher, R. (2012). Understanding the Basis of the Kalman Filter Via a Simple

and Intuitive Derivation. IEEE SIGNAL PROCESSING MAGAZINE, [online]

(1053-5888/12), pp.128-132. Available at:

https://www.cl.cam.ac.uk/~rmf25/papers/Understanding%20the%20Basis%20of

%20the%20Kalman%20Filter.pdf [Accessed 3 Nov. 2016].

[8] Cornman, A. and Mei, D. (n.d.). Extended Kalman Filtering. Stanford

University.

[9] Ooi, R. (2013). Balancing a Two-Wheeled Autonomous Robot. Undergraduate.

The University of Western Australia.

[10] Esme, B. (2016). Bilgin's Blog | Kalman Filter For Dummies. [online]

Bilgin.esme.org. Available at:

http://bilgin.esme.org/BitsAndBytes/KalmanFilterforDummies [Accessed 4 Nov.

2016].

[11] Gornicki, K. (2015). Autonomous Self Stabilising Robot. Undergraduate. The

University of Manchester.

[12] Baines, G. (2015) 'Embedded Systems Project: Motor Characterisation

and Gearbox Ratio Selection’. Available at:

https://online.manchester.ac.uk/bbcswebdav/pid-3643166-dt-content-rid-

12476223_1/courses/I3027-EEEN-21000-1151-1YR-

School of Electrical and Electronic Engineering Page 12

027927/ESP%20Week%202%20Motors%20and%20Gearbox_2015.pdf

[Accessed 4 Nov 2015]

[13] Pololu.com. (2016). Pololu - 47:1 Metal Gearmotor 25Dx52L mm MP 12V with

48 CPR Encoder. [online] Available at:

https://www.pololu.com/product/3241/specs [Accessed 3 Nov. 2016].

[14] Energizer.com. (2016). Product Datasheet - L91 Ultimate Lithium. [online]

Available at: http://data.energizer.com/PDFs/l91.pdf [Accessed 5 Nov. 2016].

[15] Learn.sparkfun.com. (2016). Battery Technologies. [online] Available at:

https://learn.sparkfun.com/tutorials/battery-technologies [Accessed 4 Nov.

2016].

[16] Hobbyking. (2016). Turnigy 2200mAh 3S 20C Lipo Pack. [online] Available at:

https://www.hobbyking.com/en_us/turnigy-2200mah-3s-20c-lipo-pack.html

[Accessed 4 Nov. 2016].

[17] Sparkfun. (2016). L298 H Bridge Datasheet. [online] Available at:

https://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf [Accessed 3

Nov. 2016].

[18] Rugged Circuits. (2016). The Motor Driver Myth. [online] Available at:

http://www.rugged-circuits.com/the-motor-driver-myth/ [Accessed 3 Nov. 2016].

[19] Anon, (2016). L6203 Datasheet. [online] Available at:

http://users.ece.utexas.edu/~valvano/Datasheets/L6203.pdf [Accessed 4 Nov.

2016].

[20] Invensense.com. (2016). MPU-9250 | InvenSense. [online] Available at:

https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250

[Accessed 4 Nov. 2016].

[21] Sainsmart.com. (2016). SainSmart 2-Wheel Arduino Self-Balancing Robot Kit

3D Printing, Arduino, Robotics | Sainsmart. [online] Available at:

http://www.sainsmart.com/sainsmart-balancing-robot-kit.html [Accessed 3 Nov.

2016].

[22] van Biezen, M. (2015). The Kalman Filter (2 of 55). [online] Ilectureonline.com.

Available at:

http://www.ilectureonline.com/lectures/subject/SPECIAL%20TOPICS/26/190/19

63 [Accessed 6 Nov. 2016].

School of Electrical and Electronic Engineering Page 13

 Appendices 8.

 Appendix 1 –Technical Risk Assessment 8.1.

As mentioned previously, the Arduino makes it an easy platform to program in due to

large community and extensive collection of libraries. Furthermore, Kalman filters and

balancing robots have been realized using an Arduino, this suggests a lower

technical risk. However, due to low processing capability the Arduino itself may be a

liability. Christian Sundin mentions that the Arduino could not execute the algorithm

for an LQG controller fast enough [1]. If met with such scenario, a solution may be to

use two Arduinos in a master-slave configuration or use a faster microcontroller such

as the STM32 Nucleo.

Another risk for the project would be slow order processing time and delivery. If the

required components do not arrive within the expected time frame, the project will

have to be put on hold. To minimize this risk, component orders were placed early

this semester.

School of Electrical and Electronic Engineering Page 14

 Appendix 2 – Health and Safety Risk Assessment 8.2.

School of Electrical and Electronic Engineering Page 15

School of Electrical and Electronic Engineering Page 16

 Appendix 3– Project Plan 8.3.

School of Electrical and Electronic Engineering Page 17

 Appendix 4 -Kalman Filter Code 1 – Constant 8.4.

%Example from http://bilgin.esme.org/BitsAndBytes/KalmanFilterforDummies
zk = zeros (1,200);
y = 4 * ones (1,200);

for n=1:200
 zk (n) = 4 + 0.5*randn;
end

x0=0;
P0=1;
R=0.25;
A=1;
Q=0;

x = zeros (1,200);
k = zeros (1,200);
p = zeros (1,200);

k(1)= P0/(P0+R);

x(1)= x0 + k(1)*(zk(1)-x0);
p(1)= (1-k(1))*P0;

for t=2:200

 k(t)= p(t-1)/(p(t-1)+R);
 x(t)= x(t-1) + k(t)*(zk(t)-x(t-1));
 p(t)=(1-k(t))*p(t-1);

end
subplot(121)
plot(x)
hold on
plot (y, 'Color','r')

subplot(122)
plot(x-4)

School of Electrical and Electronic Engineering Page 18

 Appendix 5 - Kalman Filter Code 2 – Linear 8.5.

%An object travelling in 1D at a constant velocity of 1.5m/s

yk = zeros (1,200);
for n=1:200yk
 yk (n) = 1.5*n + 3*randn ;
end % creates 'measured' inputs with 'measurements' being independent
 %of each other i.e. erros don't propagate

R=1; %the function 'randn' ouputs normally distributed random numbers
 %this makes the standard deviation=1, therefore variance=1

X0=0; %starting at origin
P0=1; %any non-zero value otherwise K=0
A=1;
Q=0;
U=1.5; %travelling speed
W=0; %Assuming no white noise
H=1; %1 as just numbers not matrices

B = zeros (1,200);
for n=1:200
 B(n)= n;
end %for elapsed time

xkp = zeros (1,200);
x = zeros (1,200);
k = zeros (1,200);
pkp = zeros (1,200);
pk = zeros (1,200);

%t1 Predicted state
xkp(1)= A*X0 + B(1)*U + W;
pkp(1)= A*P0*A + Q;

%update w/ new measurements and kalman gain
k(1)=(pkp(1)*H)*inv(H*pkp(1)*H + R);
x(1)= xkp(1) + k(1)*(yk(1)-H*xkp(1));
pk(1)= (1-k(1)*H)*pkp(1);

for t=2:200
 %t(n) Predicted state
 xkp(t)= A*x(t-1) + 1*U + W;
 pkp(t)= A*pk(t-1)*A + Q;
 %update w/ new measurements and kalman gain
 k(t)=(pkp(t)*H)*inv(H*pkp(t)*H + R);
 x(t)= xkp(t) + k(t)*(yk(t)-H*xkp(t));

 pk(t)= (1-k(t-1)*H)*pkp(t-1);
end

test = linspace(0,300,200);

subplot(121)
plot(x)
hold on
plot (yk, 'Color','r')
subplot(122)
plot(x-test)
hold on
plot(yk-test, 'Color','r')

School of Electrical and Electronic Engineering Page 19

 Appendix 6 - MPU 9250 Register Map 8.6.

School of Electrical and Electronic Engineering Page 20

School of Electrical and Electronic Engineering Page 21

School of Electrical and Electronic Engineering Page 22

 Appendix 7 - IMU Code to obtain raw values 8.7.

// code modified from https://www.youtube.com/watch?v=M9lZ5Qy5S2s

#include <Wire.h>

long accelX, accelY, accelZ; //accelerometer

long gyroX, gyroY, gyroZ;//gyro

void setup() {

 Serial.begin(9600);

 Wire.begin(); // starting I2C communication

 // initialising the sensor //SETTING UP POWER

 Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place)

 Wire.write(0x6B); // Power Management 1

 Wire.write(0x00); // pg 40

 Wire.endTransmission();

 Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place)

 Wire.write(0x6C); // Power Management 2

 Wire.write(0x00); // pg 41 - enables gyro and acc x,y,z

 Wire.endTransmission();

 //GYRO CONFIGURATION

 Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place)

 Wire.write(0x1B); // gyro configuration

 Wire.write(0x00); // pg 14 - sets the full scale to +/- 250 degress/second

 Wire.endTransmission();

 //ACC CONFIGURATION

 Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place)

 Wire.write(0x1C); // acc configuration

 Wire.write(0x00); // pg 14 - sets the full scale to +/- 2gs

 Wire.endTransmission();

}

void loop() {

//get raw data (does not represent gs or dps, needs to be scaled depending on setup)

School of Electrical and Electronic Engineering Page 23

//accelerometer readings

 Wire.beginTransmission(0x68); //I2C address of the MPU

 Wire.write(0x3B); //Starting register for Accel Readings

 Wire.endTransmission();

 Wire.requestFrom(0b1101000,6); //Request Accel Registers (3B - 40)

 while(Wire.available() < 6);

 accelX = Wire.read()<<8|Wire.read(); //Store first two bytes into accelX

 accelY = Wire.read()<<8|Wire.read(); //Store middle two bytes into accelY

 accelZ = Wire.read()<<8|Wire.read(); //Store last two bytes into accelZ

//gyro data

 Wire.beginTransmission(0x68); //I2C address of the MPU

 Wire.write(0x43); //Starting register for Gyro Readings

 Wire.endTransmission();

 Wire.requestFrom(0b1101000,6); //Request Gyro Registers (43 - 48)

 while(Wire.available() < 6);

 gyroX = Wire.read()<<8|Wire.read(); //Store first two bytes into accelX

 gyroY = Wire.read()<<8|Wire.read(); //Store middle two bytes into accelY

 gyroZ = Wire.read()<<8|Wire.read(); //Store last two bytes into accelZ

 Serial.print("Gyro");

 Serial.print(" X=");

 Serial.print(gyroX);

 Serial.print(" Y=");

 Serial.print(gyroY);

 Serial.print(" Z=");

 Serial.print(gyroZ);

 Serial.print(" Accel");

 Serial.print(" X=");

 Serial.print(accelX);

 Serial.print(" Y=");

 Serial.print(accelY);

 Serial.print(" Z=");

 Serial.println(accelZ);

}

School of Electrical and Electronic Engineering Page 24

 Appendix 8 – IMU Output 8.8.

